Abstract

We modified lignin, a renewable biomacromolecule with high carbon density, with silicon-containing vinyl groups via a highly efficient silylation reaction that achieved ∼30% substitution of lignin’s hydroxyl units. This exothermic process was carried out in the melt state, in situ, in a reactive extruder. 1H, 13C, and 31P NMR and FTIR confirmed the success of the silylation and were used to access the reactivity of the vinyl silylated lignin for copolymerization with polyacrylonitrile (PAN). Copolymers of the unmodified lignin and PAN were also produced as a reference. Importantly, the rheological behaviors of the copolymers of lignin and PAN were suitable for application in surface coating and films that were not possible if lignin or physical mixtures of lignin and PAN were used. Glass surfaces were treated via solution casting followed by oven drying, yielding films that were evaluated regarding their morphology (SEM) and thermal properties (TGA and DSC). The films produced with copolymers based on vin...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call