Abstract

Interpenetrating polymer network (IPN), random copolymer, and homopolymer nanoparticles of acrylamide and acrylic acid were prepared using an inverse emulsion polymerization technique. Differential scanning calorimetry and Fourier-transform infrared spectroscopy were used to examine the molecular structure of the prepared polymeric nanoparticles. The spherical morphology and size (∼250 nm diameter) of the nanoparticles was confirmed using scanning electron microscopy. Dynamic light scattering was used to determine the monodispersity of the particle size distribution and examine the thermally responsive swelling properties of the polymeric nanoparticle structures. Of the particle systems studied, only the IPN nanoparticles exhibited a unique, rapid sigmoidal swelling transition with temperature. These systems also achieved a much larger relative swelling volume compared to random copolymer and homopolymer particles comprised of acrylamide and acrylic acid. Increased cross-linker density resulted in an overall decrease in the maximum relative swelling volume that was obtained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.