Abstract

A UV-curable epoxy–siloxane hybrid material (epoxy hybrimer) was fabricated by photo-cationic polymerization of a sol–gel derived cyclo-aliphatic epoxy oligosiloxane (CAEO) blended with oxetane cross-linker in the presence of an onium salt. Antioxidants for fabrication of the UV-curable epoxy hybrimer with high thermal resistance against yellowing were incorporated in the UV-curable epoxy hybrimer. The UV-curable epoxy hybrimer with the antioxidants showed high thermal resistance without yellowing during 120 °C thermal aging. High thermal resistance of the UV-curable epoxy hybrimer was similar and higher compared to those of commercial thermally curable silicone and UV-curable epoxy LED encapsulants, respectively. The thermally resistant UV-curable epoxy hybrimer was successfully encapsulated on a LED without any cracking or delamination, and maintained a flat surface on the LED without distortion of the designed flat shape. Before/after thermal and blue light aging, the performance of the LED encapsulated by the UV-curable epoxy hybrimer was not changed. On the basis of its excellent properties as a LED encapsulant, the UV-curable epoxy hybrimer can be utilized as a UV-curable LED encapsulant for white LEDs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call