Abstract
Sunflower oil is a common edible oil in the world, which is highly prone to oxidative degradation during the frying process. The present study aimed to investigate the effects of products obtained from the thermal oxidation process of sunflower oil on metabolic indices, and the secretion status of leptin and ghrelin in rats. In vivo studies were designed after determining the rate of formation of active aldehydes and peroxide value in sunflower oil following 300°C in a period of 30-240 min. To this end, 36 rats in 6 separate groups were fed with 2ml of normal saline, fresh sunflower oil, and heated oils at 30, 60, 120, and 240 min for 45 days. Finally, lipid profile changes and leptin/ghrelin secretion were examined, along with histological changes in the liver tissue. The results indicated a significant increase in serum LDL, VLDL and triglycerides, and a decrease in HDL, in the groups treated with heated oils. These changes were associated with a higher accumulation of triglycerides, active aldehydes, and histological changes in the hepatic tissue. Although the serum ghrelin level in the groups receiving heated oil did not change significantly compared to the fresh oil, the serum leptin level increased significantly in the groups receiving heated oil. According to our findings, increasing the time of sunflower oil heating enhanced the formation of active aldehydes, so that daily consumption of such oxidized oils might be associated with the occurrence of dyslipidemia, fatty liver and the development of leptin resistance. PRACTICAL APPLICATIONS: Sunflower oil is highly prone to oxidative degradation during the frying process. Increasing time of sunflower oil heating enhanced the formation of active aldehydes. Daily consumption of oxidized oils might be associated with the occurrence of dyslipidemia, fatty liver and the development of leptin resistance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.