Abstract

Various Co-based perovskites are synthesized through thermally driving viscous fluids. In this process, rare earth salts, cobalt salts, and citric acid do not require homogeneous mixing but only need to be heated until they melt into a molten viscous slurry. The physicochemical properties of cobalt-based perovskites were examined using techniques such as X-ray diffraction (XRD), electron paramagnetic resonance (EPR), scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-Mapping-EDS), X-ray photoelectron spectroscopy (XPS), hydrogen temperature-programmed reduction (H2-TPR), oxygen temperature-programmed desorption (O2-TPD), and N2 adsorption-desorption. The results indicate that the surface-active species can be controlled by altering the A-site elements of cobalt-based perovskites. All catalysts synthesized through the thermal treatment of viscous mixtures exhibited a low activation temperature and a low apparent activation energy for the catalytic oxidation of toluene. Among all cobalt-based perovskites, LaCoO3 demonstrated the most outstanding catalytic activity, primarily attributed to its capacity to expose a larger number of surface-active sites and oxygen species, as well as its superior reducibility. Furthermore, the formation process of optimal LaCoO3 was monitored using thermogravimetric analysis-differential scanning calorimetry (TGA-DSC), and the byproducts of the low-temperature catalytic oxidation of toluene by the catalyst were identified using gas chromatography-mass spectrometry (GC-MS). The possible mechanism of toluene oxidation was inferred by in situ diffuse reflection infrared Fourier transform spectroscopy (DRIFTS). Moreover, LaCoO3 exhibits a predominant resistance to high-temperature hydrothermal conditions. This work provides a scalable and innovative approach to fabricating exceptionally effective catalysts for the efficient purification of VOCs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.