Abstract

Delaminated regions figure prominently among potential threats to the structural integrity of layered plate configurations. Under a certain thermal loading threshold, geometrically nonlinear local instabilities in the form of buckling or wrinkling across the delaminated region crop up, giving rise to markedly amplified distributions of contour peeling stresses. The present paper aims to shed light on and quantify the manifold aspects and implications of the delamination-thermal-wrinkling trio. The paper faces the challenges of handling the nature of the layered configuration, the inherent geometrical irregularity of delaminated regions, the discontinuous interfacial conditions, the 3D stress state along the delamination contour, and the nonlinear evolution of local instabilities across an orthotropic delamination. For that purpose, a specially tailored 2D multi layered plate model and a corresponding triangular finite element are derived. The original contribution of the proposed model is in its ability to capture the thermally-driven, nonlinear small scale phenomena related to geometrically nonlinear response of the layered structure, using a 2D multi-layered plate theory solved with efficient 2D multi-layered triangular finite elements, as opposed to computationally expensive 3D finite element analysis. This is accomplished via the integration and synergy of methodologies that include: multi-layered high order plate theory to account for the layered layout, geometrically nonlinear strain-displacement relations to account for geometrical nonlinearities, orthotropic and thermo-elastic constitutive laws to account for thermal loads, and interlayer interface modelling which, combined with a the shear-locking free triangular FE, allows accounting for arbitrarily shaped delaminations. The model is validated against a 1D closed form solution and a 3D continuum based finite element analysis and is then used for a numerical study. In the study, the onset and the evolution of local instabilities in an adhesively bonded orthotropic layer across an irregular delamination are looked into. Special attention is given to the significant influence of material orthotropy and the relative directionality of the delamination on the threshold thermal load, the nonlinear wrinkling patterns, and the peeling traction distribution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.