Abstract

Thermally induced plane stress in GaN layers of different thicknesses, grown by metalorganic vapour phase epitaxy on sapphire, is investigated. Thin layers, characterized by isolated grains, are found to be stress-free. With increasing layer thickness, however, grains start to coalesce and stress can build up when the samples are cooled down following growth. As soon as the coalescence process is completed and a compact film has been formed, a maximum stress level is reached which does not further increase for still thicker layers. Therefore, it is proposed that grain edges enable non-compact films to elastically relieve in-plane stress.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.