Abstract

This study reports the intercalation of pyridine molecules between neighboring layers of two‐dimensional (2D) ferrous nitroprusside. In the material under study, the stacking of neighboring layers results in the formation of a long range ordered solid, where the 3D structure is supported by dipole‐dipole attractive interactions between neighboring pyridine molecules in the interlayer region. No chemical interactions were observed between layers, which preserve their identity as a 2D material. In this hybrid inorganic–organic solid, a thermal induced spin transitions from high to low spin on cooling and then from low to high spin on heating were observed. Such thermal induced spin crossover transition takes place with a pronounced hysteresis of 18 K, according to the magnetic and DSC measurements. That spin crossover transition is characterized by an extremely small structural change, involved a unit cell volume reduction from the high to low spin states of only 0.7 % and a related Fe–NPyridine distance shortening of 0.10 Å. The two spin states and the transition between them were additionally characterized from magnetic and DSC data and, Raman and Mössbauer spectra.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.