Abstract

Pulsed laser irradiation of a weakly absorbing fluid sphere in a transparent medium results in the production of a large thermal gradient at the surface of the sphere. The rapid transfer of heat from the sphere to the surrounding fluid as a result of the thermal gradient generates high frequency photoacoustic transients which affect the leading edge of a photoacoustic wave. Here, the character of the photoacoustic wave is determined by solving a modified wave equation for the photoacoustic effect. A solution to the heat diffusion equation is determined, which, together with the heating function for the optical source, provides the source term for the wave equation for pressure. The wave equation is then solved with appropriate boundary conditions using Laplace transform techniques to give the photoacoustic waveform. The relative magnitude of the transient to the N-shaped wave is shown to be determined, in part, by the laser pulse length.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.