Abstract

Troilite is one type of FeS polymorph formed under reducing environmental conditions. However, its phase transition by laser heating during Raman analysis has not been investigated in detail. This study focuses on identifying changes to Raman spectra of troilite resulted by laser heating during Raman analysis so as to determine optimized analytical conditions for characterizing iron sulfides. We comfirm that iron sulfides exposed in air are easily transformed to magnetite and hematite after a high-power laser (> 200 mW/μm2 for pyrite and > 14 mW/μm2 for troilite) irradiation. Troilite crystal structure is also broken easily by laser (>12 mW/μm2) under the vacuum conditions due to the volatilization of S and Fe, possibly inducing the formation of nanophase metallic iron. Therefore, iron sulfides are expected to be sensitive to laser heating. Here, we have confirmed the laser heating effect through a set of heating experiments from ambient temperature to 500 °C with various laser powers. Our results suggest that Raman analysis for troilite should be performed with a low laser power of <1.50 mW (12 mW/μm2) both in air and vacuum environments. The heating effects on troilite phase transition can be responsible for the formation of magnetite, hematite, and nanophase metallic iron in lunar samples. The thermally induced phase transition of troilite observed in this study is important because it undoubtedly modifies both the redox state and magnetic property of extraterrestrial samples and would trigger a misleading interpretation of planetary evolution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call