Abstract

The influence of cooling rate on the size and uniformity of liquid crystal droplets dispersed in a polymer matrix by a thermally induced phase separation (TIPS) process is investigated under a microgravity environment. The experimental results are compared with Monte Carlo simulations. Even though the simulations are carried out on a two-dimensional lattice, the results are in reasonably good agreement with the experiments. We find that a fast cooling rate gives smaller droplet sizes and hence a more uniform distribution as compared to the ones produced under a slow cooling rate. The formation of droplets under a fast cooling rate is similar to the simulated annealing process. For a fast cooling rate the system is unable to attain the global minimum and stays in a higher surface energy state which is associated with smaller droplets. For a given cooling rate, the effect of quench depth is studied by varying the final temperature. Simulation results show that at a shallow quench depth (high final temperature) a fast cooling rate is not effective in controlling the droplet morphology due to the high thermal energy possessed by the particles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call