Abstract

Mesoporous germanium (Ge) is a new nanostructured material with a very high potential for numerous applications. Thermally induced structural evolution of this nanomaterial is a key point for many high-temperature processes, such as epitaxy, for example, in which it can be involved. In this work, we investigate these structural changes occurring during thermal annealing in vacuum in temperature range between 250 and 650 °C. The influences of the annealing temperature and time as well as of the initial porous layer thickness on the morphology reorganization of the mesoporous Ge layer are described in detail. The obtained results are discussed in terms of Lifshitz-Slyozov-Wagner theory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.