Abstract

We present both experimental and theoretical study of thermally induced morphological transition of silver nanofractals. Experimentally, those nanofractals formed from deposition and diffusion of preformed silver clusters on cleaved graphite surfaces exhibit dendritic morphologies that are highly sensitive to any perturbation, particularly caused by temperature. We analyze and characterize the morphological transition both in time and temperature using the recently developed Monte Carlo simulation approach for the description of nanofractal dynamics and compare the obtained results with the corresponding experimental data. The reported results reveal essential and general features of dynamical systems having dendritic shape.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.