Abstract

To date, metal foam products have rarely made it past the prototype stage. The reason is that few methods exist to manufacture metal foam into the shapes required in engineering applications. Laser forming is currently the only method with a high geometrical flexibility that is able to shape arbitrarily sized parts. However, the process is still poorly understood when used on metal foam, and many issues regarding the foam's mechanical response have not yet been addressed. In this study, the mechanical behavior of metal foam during laser forming was characterized by measuring its strain response via digital image correlation (DIC). The resulting data were used to verify whether the temperature gradient mechanism (TGM), well established in solid sheet metal forming, is valid for metal foam, as has always been assumed without experimental proof. Additionally, the behavior of metal foam at large bending angles was studied, and the impact of laser-induced imperfections on its mechanical performance was investigated. The mechanical response was numerically simulated using models with different levels of geometrical approximation. It was shown that bending is primarily caused by compression-induced shortening, achieved via cell crushing near the laser irradiated surface. Since this mechanism differs from the traditional TGM, where bending is caused by plastic compressive strains near the laser irradiated surface, a modified temperature gradient mechanism (MTGM) was proposed. The densification occurring in MTGM locally alters the material properties of the metal foam, limiting the maximum achievable bending angle, without significantly impacting its mechanical performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.