Abstract

Cancerous invasion yields unusual metabolisms providing a significant amount of peptide albuminomes that modulate albumin stability via binding. The study aimed at the investigation of the thermal stability of human plasma albumin with breast cancer of various stages by means of differential scanning calorimetry (DSC). Blood plasma was drawn from 11 female breast cancer patients and 50 healthy volunteers of homogeneous demographics. Plasma samples and their albumin-enriched fractions were subjected to DSC scanning between 37 and 90°C at 5°C/min rate. For normal blood plasma, a characteristic signature of DSC tracing was observed. And, the deconvolution of DSC thermograms revealed the recognition of thermal transition of albumin. It was found that denaturing temperature of albumin increased with increasing breast cancer staging which implied the increase in albuminome/peptide abundance produced by cancerous invasion. The analysis of albumin denaturing energetics based on rational approximation of the simple Lumry-Eyring model demonstrated that thermal transition of free albumin and albuminome-bound form attained energetic levels expressed as apparent activation energy (Eapp ± s.e.) of 132.68 ± 14.21 and 46.76 ± 8.42Kcal/mol corresponded to the schemes dominated by irreversible alteration and by reversible unfolding, respectively. Thus, Eapp value may indicate the degrees of cancerous invasion. It was proposed that Eapp may be used as an indicator to diagnose and assess the prognosis of breast cancer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call