Abstract

Conventional wisdom is that increasing temperature causes quantum coherence to decrease. Using finite temperature perturbation theory and exact calculations for the strongly correlated bosonic Mott insulating state we show a practical counter-example that can be explored in optical lattice experiments: the short-range coherence of the Mott insulating phase can increase substantially with increasing temperature. We demonstrate that this phenomenon originates from thermally produced defects that can tunnel with ease. Since the near zero temperature coherence properties have been measured with high precision we expect these results to be verifiable in current experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.