Abstract

Abstract Pure Al coatings were fabricated on Cu substrates via kinetic spraying for double-layered Cu liner. The coatings need to endure the high strain rate severe plastic deformation during explosion, in this study, the process optimization of Al deposition was initiated with a definition of “critical velocity” of Al particle in kinetic spraying on a basis of numerical modeling and computations using ABAQUS finite element codes. The simulation results revealed that the critical velocity of Al particle at room temperature (RT) was 780 m s-1, and the critical velocity decreased as particle temperature increased. On the basis of simulation results, mechanical properties such as bond strength of the coatings formed under various process conditions were evaluated and compared. These properties were discussed in terms of the processing-structure-property relationships.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.