Abstract

ABSTRACT The presence of radiatively driven outflows is well established in ultraluminous X-ray sources (ULXs). These outflows are optically thick and can reprocess a significant fraction of the accretion luminosity. Assuming isotropic emission, escaping radiation from the outflow’s photosphere has the potential to irradiate the outer disc. Here, we explore how the atmosphere of the outer disc would respond to such irradiation, and specifically whether unstable heating may lead to significant mass loss via thermally driven winds. We find that, for a range of physically relevant system parameters, this mass loss may actually switch off the inflow entirely and potentially drive limit-cycle behaviour (likely modulated on the time-scale of the outer disc). In ULXs harbouring neutron stars, magnetic fields tend to have a slight destabilizing effect; for the strongest magnetic fields and highest accretion rates, this can push otherwise stable systems into the unstable regime. We explore the prevalence of the instability in a simulated sample of ULXs obtained from a binary population synthesis calculation. We find that almost all neutron star and black hole ULXs with Eddington-scaled accretion rates of $\dot{m}_0 \lt 100$ should be able to drive powerful outflows from their outer discs. Several known ULXs are expected to lie in this regime; the persistence of accretion in these sources implies the irradiation may be anisotropic which can be reconciled with the inferred reprocessed (optical) emission if some of this originates in the wind photosphere or irradiation of the secondary star.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call