Abstract
We study a recently proposed spin-1 model with competing antiferromagnetic first-neighbor interaction and a third-neighbor coupling mediated by nonmagnetic states, which reproduces topological features of the phase diagrams of high-T_{c} superconductors [S. A. Cannas and D. A. Stariolo, Phys. Rev. E 99, 042137 (2019)2470-004510.1103/PhysRevE.99.042137]. We employ a cluster mean-field approach to investigate effects of crystal field anisotropy on the phase transitions hosted by this model. At low temperatures, the temperature-crystal field phase diagram exhibits superantiferromagnetic (SAF), antiferromagnetic (AF), and paramagnetic (PM) phases. In addition, we found a thermally driven state between SAF and PM phases. This thermally driven state and the SAF phase appears in the phase diagram as a domelike structure. Our calculations indicate that only second-order phase transitions occur in the PM-AF phase boundary, as suggested by previous Monte Carlo simulations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.