Abstract

In the framework of the Landauer–Büttiker formalism, we investigate coherent spin transport through a transverse-biased magnetic zigzag-edge graphene nanoribbon, with a temperature difference applied between the source and the drain. It is shown that a critical source temperature is needed to generate a spin-polarized current due to the presence of a forbidden transport gap. The magnitude of the obtained spin polarization exceeds 90% in a wide range of source temperatures, and its polarization direction could be changed by reversing the transverse electric field. We also find that, at fixed temperature difference, the spin-polarized current undergoes a transition from increasing to decreasing as the source temperature rises, which is attributed to the competition between the excited energy of electrons and the relative temperature difference. Moreover, by modulating the transverse electric field, the source temperature and the width of the ribbon, we can control the device to work well for generating a highly spin-polarized current.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call