Abstract

The Kramers theory for the thermally activated rate of escape of a Brownian particle from a potential well is extended to a barrier of arbitrary shape. The extension is based on an approximate solution of the underlying Fokker–Planck equation in the spatial diffusion regime. With the use of the Mel’nikov–Meshkov result for the underdamped Brownian motion an overall rate expression is constructed, which interpolates the correct limiting behavior for both weak and strong friction. It generalizes in a natural way various different rate expressions that are already available in the literature for parabolic, cusped, and quartic barriers. Applications to symmetric parabolic and cusped double-well potentials show good agreement between the theory and estimates of the rates from numerical calculations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.