Abstract

Energy recovery from flue gases in thermal treatment plants is an integral part of municipal solid waste (MSW) management for many industrialized nations. Often cogeneration can be employed for both enhancing the plant profitability and increasing the overall energy yield. However, it is normally difficult to justify traditional cogeneration in tropical locations since there is little need for the heat produced. The main objective of this article is to investigate the opportunities and potentials for various types of absorption technologies driven by MSW power plants for providing both electricity and cooling. Results show that cogeneration coupling with thermally driven cooling is sustainably and economically attractive for both electricity and cooling production. The thermally driven cooling provides significant potential to replace electrically driven cooling: such systems are capable of providing cooling output and simultaneously increasing electricity yield (41%). The systems are also capable of reducing the fuel consumption per unit of cooling in comparison with conventional cooling technology: a reduction of more than 1 MW fuel/MW cooling can be met in a small unit. MSW power plant coupled with thermally driven cooling can further reduce CO 2 emissions per unit of cooling of around 60% as compared to conventional compression chiller and has short payback period (less than 5 years).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.