Abstract

An adaptation of the classical Graetz methodology is applied to investigate the thermal development of forced convection in a parallel plate channel or a circular tube filled by a porous medium saturated by a rarefied gas, with walls held at constant heat flux. The Brinkman model is employed. The analysis leads to expressions for the local Nusselt number Nu as functions of the dimensionless longitudinal coordinate and the Darcy number. It is found that an increase in the velocity slip coefficient generally increases Nu by a small or moderate amount (but the circular tube at large Darcy number is an exception) while an increase in the temperature slip coefficient reduces Nu by a more substantial amount. These trends are uniform as the longitudinal coordinate varies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.