Abstract

Effective heat dissipation has become a major concern with the rapid development of microelectronic devices. In general, thermally conductive fillers are incorporated into the polymeric matrix to increase the thermal conductivity of polymer composites. Herein, poly(catechol-polyamine) (PCPA) is employed to modify boron nitride (BN) platelets, referred to as BN-PCPA, and improves the interfacial compatibility between a thermally conductive filler and elastomer matrix, resulting in carboxylated acrylonitrile-butadiene rubber (XNBR) composites filled with BN-PCPA platelets with enhanced thermal conductivity. The influence of PCPA thickness on the mechanical properties, thermal conductivity, and dielectric properties of BN-PCPA/XNBR composites is systematically studied. Briefly, the interfacial compatibility between the BN-PCPA filler and XNBR matrix increases with increasing PCPA thickness, leading to enhanced thermal conductivity. The maximum thermal conductivity of 0.399 W/(m·K) has been rendered by the BN-PCPA-12h/XNBR composite, which is about 2.5 times of pure XNBR. This work provides an easy route to develop polymer composites with a relatively high thermal conductivity and high dielectric constant for potential application in practical electronic packaging.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.