Abstract
In this work, thermal carbonization is shown to provide the necessary surface passivation to enable highly robust DNA detection on a porous silicon (PSi) platform, overcoming previous corrosion challenges with detection of negatively charged biomolecules. The stability of thermally carbonized PSi (TCPSi), oxidized PSi (OPSi), and undecylenic acid-modified PSi (UAPSi) is compared in phosphate-buffered saline and during DNA sensing experiments. Reflectance measurements reveal an improvement in stability and DNA sensor response for TCPSi compared to OPSi and UAPSi. TCPSi exhibits a large positive sensor response with >90% DNA hybridization efficiency. In comparison, UAPSi shows a smaller positive DNA sensor response, likely lessened by a small corrosion effect, while OPSi exhibits a large negative sensor response, indicating significant induced PSi corrosion that confounds the ability of OPSi to yield meaningful readouts of DNA hybridization events. This work expands the application of TCPSi for its more widespread usage in sensing applications where competing substrate corrosion may influence device stability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.