Abstract
We describe a walking microrobot that is propelled by cilialike thermal bimorph actuator arrays. The robot consists of two actuator array chips, each having an 8 × 8 array of “motion pixels,” which are composed of four orthogonally oriented cilia. Each group of unidirectional cilia is controlled independently for each chip, which provides planar motion with three degrees of freedom (x, y, θ). The robot is approximately 3 cm in length, 1 cm in width, and 0.9 mm in height and has a mass of 0.5 g. By varying the actuation frequency and motion gait strategy, the direction and velocity of the motion can be controlled. In this paper, we present the system architecture, control mechanism, and modeling of the robot, as well as experimental results, during linear and rotary motion. The robot can carry loads up to seven times its own mass, and it can operate at speeds up to 250 μm/s with step sizes from 1 to 4 μm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.