Abstract

The thermally activated deformation of textured Mg alloys is evaluated using repeated stress relaxation tests analyzed with the assistance of elasto-viscoplastic self-consistent (EVPSC) polycrystal modeling. The data, presented in a Haasen plot, suggests that the superposition of at least two mechanisms controls the thermally activated glide of dislocations in both a rare-earth containing alloy, ME10, and the conventional alloy, AZ31: forest dislocation interactions and a mechanism with a lower activation volume (solute–dislocation interaction and/or cross-slip).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.