Abstract
Enhancement of thermally activated dislocation motion by solute hydrogen (H) has been envisaged in Fe–Cr–Ni austenitic steel through accelerated stress relaxation and a prolonged creep duration. Nevertheless, differences in the imposed stress/strain between the compared non- and H-charged samples at the starts of these mechanical transients, as well as involvements of other obstacles (e.g., alloying elements and forest dislocations), mask the essential effects of H. We performed stress relaxation and strain rate jump tests at multiple stress/strain for Type310S austenitic steel with ∼7600 at ppm H at 296 K. The measured strain rate sensitivity (SRS) was evaluated via a methodology so-called Haasen plot. By screening the latent factors above, primary role of H was revisited: they work as short-range obstacles, hindering the dislocation movement. Multiple H atoms potentially participate in each thermal activation event, giving rise to a stress-equivalent activation volume and a proportionality between H concentration and yield strength.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.