Abstract
Thermally activated delayed photoluminescence (TADPL) generated from organic chromophore-functionalized quantum dots (QDs) is potentially beneficial for persistent light generation, QD-based PL sensors, and photochemical synthesis. While previous research demonstrated that naphthoic acid-functionalized InP QDs can be employed as low-toxicity, blue-emissive TADPL materials, the electron trap states inherent in these nanocrystals inhibited the observation of TADPL emerging from the higher-lying bright states. Here, we address this challenge by employing the heterocyclic aromatic compound 8-quinolinecarboxylic acid (QCA), whose triplet energy is strategically positioned to bypass the electron trap states in InP QDs. Transient absorption and photoluminescence spectroscopies revealed the generation of bright-state TADPL from QCA-functionalized InP QDs resulting from a nearly quantitative Dexter-like triplet-triplet energy transfer (TTET) from photoexcited InP QDs to surface-anchored QCA chromophores followed by reverse TTET from these bound molecules to the InP QDs. This modification resulted in a 119-fold increase in the average PL intensity decay time with respect to the as-synthesized InP QDs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.