Abstract
Here, we investigate the hole transport mechanism in poly(3-hexylthiophene) (P3HT). First, ohmic contact has been established at indium tin oxide (ITO)/P3HT interface by molybdenum oxide (MoOx) hole injection layer. Thickness of MoOx layer is observed to play a crucial role with ohmic contact being observed even for 1 nm layer. However, device with less than 5 nm layer are found to be extremely unstable. A device with a 5 nm layer of MoOx is found to be stable and ohmic injection at ITO/P3HT layer enabled to observe ohmic conduction at low voltages ( 3 V. At higher voltages, effect of field on charge carrier mobility is also observed. Observation of SCLC enabled us to directly evaluate the hole mobility in P3HT which is calculated to be 5.4 × 10 -5 cm 2 /Vs. Conductivity is calculated from the low voltage region and found to be 6.85 × 10 -8 S/cm. Temperature dependent mobility is used to study the charge transport behavior and it has been observed that mobility is thermally activated with an extremely low activation energy of 39 meV. Copyright © 2016 VBRI Press.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.