Abstract

Measurements of two-photon-excited fluorescence (TPF) of fluorescein and Rhodamine 6G in various solvents were performed with a continuous-wave (cw) laser for excitation and an acousto-optic tunable filter for spectral dispersion. Interestingly, the cw laser excitation produced an unwanted thermal-lens effect when the measurements were performed in solvents that absorb the excitation laser light (e.g., alcohols and water, because these solvents absorb the 780-nm excitation light through the overtone and combination transitions of the O-H group). The defocusing effect of the thermal lens leads to a decrease in the TPF signal. Because the strength of the thermal lens depends on the thermo-optical properties (dn/dT and thermal conductivity) of the solvent, its interference makes the effect of solvents on the TPF much different from those on one-photon-excited fluorescence. However, the thermal-lens interference will not limit the application of this cw laser excited TPF technique because, even when measurements were performed in solvents that absorb cw excitation laser light, the thermal-lens interference was observed only in solvents such as nonpolar organic solvents that have relatively better thermo-optical properties. Interference was not observed in water, which is the most widely used solvent for the TPF technique (because water has poor thermo-optical properties).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call