Abstract

We study the out-of-equilibrium dynamics of bosonic atoms in a 1D optical lattice, after the ground-state is excited by a single spontaneous emission event, i.e. after an absorption and re-emission of a lattice photon. This is an important fundamental source of decoherence for current experiments, and understanding the resulting dynamics and changes in the many-body state is important for controlling heating in quantum simulators. Previously it was found that in the superfluid regime, simple observables relax to values that can be described by a thermal distribution on experimental time-scales, and that this breaks down for strong interactions (in the Mott insulator regime). Here we expand on this result, investigating the relaxation of the momentum distribution as a function of time, and discussing the relationship to eigenstate thermalization. For the strongly interacting limit, we provide an analytical analysis for the behavior of the system, based on an effective low-energy Hamiltonian in which the dynamics can be understood based on correlated doublon-holon pairs.

Highlights

  • An important fundamental question in many-body quantum mechanics is to what extent and under which conditions an isolated system perturbed away from equilibrium will undergo thermalization, in the sense that at long times the system will reach a steady state where simple observables equal the values for a thermal distribution [ – ]

  • As we showed previously [ ], after a spontaneous emission, depending on the parameter regime and the corresponding different characteristics of the low-energy spectrum: either (i) the system relaxes over short times to thermal values of the quasimomentum distribution and kinetic energy, or (ii) on short timescales, the system relaxes to states that are clearly non-thermal, even if all atoms remain in the lowest Bloch band

  • We show clearly parameter regimes in which the system relaxes to thermal distributions for simple quanitites, and others where it relaxes on short timescales to non-thermal values

Read more

Summary

Introduction

An important fundamental question in many-body quantum mechanics is to what extent and under which conditions an isolated system perturbed away from equilibrium will undergo thermalization, in the sense that at long times the system will reach a steady state where simple observables equal the values for a thermal distribution [ – ]. As we showed previously [ ], after a spontaneous emission, depending on the parameter regime and the corresponding different characteristics of the low-energy spectrum: either (i) the system relaxes over short times to thermal values of the quasimomentum distribution and kinetic energy, or (ii) on short timescales, the system relaxes to states that are clearly non-thermal, even if all atoms remain in the lowest Bloch band.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call