Abstract

We have investigated collisions involving fast, excited Cs atoms produced by photodissociating Cs{sub 2} molecules with a pulsed dye laser. The velocities of the atoms in the 5D state formed by the process Cs{sub 2}(X {sup 1}{sigma}{sub g}{sup +})+({Dirac_h}/2{pi}){omega}{sub pump}{yields}Cs{sub 2}{sup *}{yields}Cs(5D)+Cs(6S) are much greater than typical thermal velocities associated with the cell temperature. Using a narrow-band cw probe laser to observe the increased Doppler broadening of the 5D{sub 3/2}{yields}5F{sub 5/2} excitation line shape, we are able to monitor the time evolution of the velocity distribution of these 5D atoms. We analyze the data using a model that predicts the time-dependent excitation line shape of the fast atoms. Because the photons used to dissociate the molecules have a well-defined energy, the velocity distribution of the excited atoms in the early time after they are produced can be fairly well determined. Over time, velocity-changing collisions with ground-state Cs atoms cause the velocity distribution of excited atoms to approach the thermal limit. An analysis based on the strong-collision model leads to a prediction that the observed line shape at intermediate times will be a linear combination of contributions from distinct 'fast' and 'thermalized' atomic populations. By fitting our data to this model,more » a rate coefficient for velocity-changing collisions of fast Cs(5D{sub 3/2}) atoms with ground-state Cs atoms has been determined. The result k{sub VCC}=(6.1{+-}1.2)x10{sup -10} cm{sup 3} s{sup -1} corresponds to an effective velocity-changing collision cross section of {sigma}{sub VCC}{sup Cs,eff}=(1.2{+-}0.2)x10{sup -14} cm{sup 2}.« less

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call