Abstract
We compute the deterministic approximation of products of Sobolev functions of large Wigner matrices W and provide an optimal error bound on their fluctuation with very high probability. This generalizes Voiculescu's seminal theorem [36] from polynomials to general Sobolev functions, as well as from tracial quantities to individual matrix elements. Applying the result to eitW for large t, we obtain a precise decay rate for the overlaps of several deterministic matrices with temporally well separated Heisenberg time evolutions; thus we demonstrate the thermalisation effect of the unitary group generated by Wigner matrices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.