Abstract

Microchannels have an excellent thermal performance but they acquire a large pressure drop. Recent studies show that microchannels with superhydrophobic surfaces may provide an innovative approach to achieve a balance between thermal and hydraulic performances. In this work, the fluid flow and heat transfer in microtube with superhydrophobic surfaces are analyzed at fully developed laminar flow, and the formulas of fRe and Nu are obtained. Comparisons of thermal resistances on superhydrophobic and smooth microtubes are performed at identical flow rate, pressure drop and pumping power, respectively. At indentical flow rate, superhydrophobic surface can’t enhance the thermal-hydraulic performance. At identical pressure drop or pumping power, the critical pressure drop and pumping power exist respertively, which is the boundary point of the thermal-hydraulic performance between superhydrophobic and smooth microtubes. The critical parameters are deduced to help determining whether superhydrophobic surfaces enhance thermal-hydraulic performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.