Abstract

Natural convection in enclosures have been studied numerically to provide insight into the scaling laws existing for removal of decay heat in Liquid Metal Fast Reactors (LMFR). Specifically, 3-D simulations have been carried out for natural circulation in a cylinder with small aspect ratio (of the order of 0.5). These results have been compared to the results of an experiment conducted by UCSB, in collaboration with GE, to provide benchmark data for code validation. Parametric studies have been conducted to establish the validity of a 3-D Finite difference code that uses body-fitted grids for simulations of complex geometries. Further, numerical simulations have been carried out to demonstrate the importance of 3-D computer codes as tools in the design and scale-up of prototype LMFRs. It has been shown that the geometry of the passive safety systems is key to safe operation of LMFRs under shutdown conditions. The key phenomena that occur in such situations have bee studied and the available experimental studies have been identified. The future direction for modeling of natural convection recirculating flows in confined enclosures has been proposed. 31 refs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.