Abstract

The solid-core Submersion-Subcritical Safe Space (S 4) reactor is cooled with He-28% Xe gas (molecular weight of 40 g/mole) and nominally generates 471 kWth for at least 7 years. To avoid single point failures in reactor cooling and energy conversion, the S 4 reactor core is divided into three hydraulically independent, but neutronically and thermally coupled sectors. Each sector feeds a separate Closed Brayton Cycle (CBC) power conversion loop with separate heat rejection radiator panels. Detailed thermal-hydraulic analyses of the S 4 reactor core are performed to ensure that the maximum fuel temperature during nominal operation stays below 1300 K. In addition, a neutronics analysis performed using MCNP 5 confirms that the S 4 reactor satisfies the design reactivity requirements. These are at least $ 4 of cold clean excess reactivity, at least $ 2.25 of shutdown margin, and at least $ 1 subcritical in the worst-case of submersion and flooding, following a launch abort accident. Mass estimates of the S 4 reactor design that meets both the thermal and the reactivity requirements are provided.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.