Abstract

AbstractWeathering microforms associated with exfoliation were investigated on 40 granitic spheroidal boulders identified on Pricopan Ridge (Măcin Mountains) in order to establish a spatial distribution pattern. Continuous thermal monitoring allowed the frequency and intensity distribution assessment of short‐term temperature changes triggered by summer storms, of intense day–night amplitudes and frost cycles across a uniform rounded boulder. Rock strength estimated by Schmidt hammer tests differentiates a significantly weaker resistance on the southern face of the boulders (rebound values of 27 to 33) in comparison with the northern face (43–50). The lowest resistance of the north–south cross‐boulder profile corresponds to the southern gentle slopes (0°–45°) thus defining the most susceptible area to exfoliation and other weathering processes. It is argued that this low‐resistant sector fits well with the maximum frequency and intensity of thermal processes recorded on the low and mid slopes (0°–45°) of the boulders south side, with small differences from one process to another, whilst the sector of 20° to 30° south corresponds to the peak activity of all. In accordance, the overlay map of exfoliated surfaces places the high frequency area on a spherical cap developed similarly (between 5° north and 45° south). The smallest exfoliated surfaces normally appear around 30° south and are inferred to extend in time both to the boulder top and downslope. The correlations between the frequency/intensity maps of thermal processes and the frequency map of exfoliated surfaces point to a complementary action in the exfoliated surfaces development of the short‐term temperature changes and diurnal cooling and heating due to the directional insolation effect, as similarly inferred in the development of meridional cracks. Copyright © 2016 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.