Abstract

We have developed a one-dimensional model for thermal-wave depth profiling that provides expressions for the temperature at the surface of the sample and for the thermoelastic response beneath the surface. The model shows that elastic wave interference effects produce significant differences between samples with mechanically free and constrained surfaces, and that thermal- wave images of thermal conductivity variations are obtainable from the thermoelastic signal only if the front surface is mechanically free. We have also considered the case of subsurface heating and found that for heating occurring at depths of more than a few thermal diffusion lengths, the thermoelastic signal becomes independent of thermal conductivity variations. This has important implications for thermal-wave image range and resolution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.