Abstract

Mn(II)-based hybrid halides have attracted great attention from the optoelectronic fields due to their nontoxicity, special luminescent properties, and structural diversity. Here, two novel organic-inorganic hybrid Mn(II)-based halide single crystals (1-mpip)MnCl4·3H2O and (1-mpip)2MnCl6 (1-mpip = 1-methylpiperazinium, C5H14N2+) were grown by a slow evaporation method in ambient atmosphere. Interestingly, (1-mpip)2MnCl6 single crystals exhibit the green emission with a PL peak at 522 nm and photoluminescence quantum yields (PLQYs) of ≈5.4%, whereas (1-mpip)MnCl4·3H2O single crystals exhibit no emission characteristics. More importantly, there exists a thermal-induced phase transformation from (1-mpip)MnCl4·3H2O to emissive (1-mpip)2MnCl6 at 372 K. Moreover, a reversible luminescent conversion between (1-mpip)MnCl4·3H2O and (1-mpip)2MnCl6 was simply achieved when heated to 383 K and placed in a humid environment or sprayed with water. This work not only deepens the understanding of the thermal-induced phase transformation and humidity-sensitive luminescent conversion of hybrid Mn(II)-based halides, but also provides a guidance for thermal and humidity sensing and anticounterfeiting applications of these hybrid materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call