Abstract

Vacuum forming is used to manufacture large molded parts. As forming conditions have a significant effect on the dimensional accuracy, these should be determined accordingly. In this study, a geometric nonlinear creep analysis of polymethyl methacrylate (PMMA), which is a common thermoplastic resin, was carried out at the target temperature of 393.15[Formula: see text]K and target strain of approximately 50% for vacuum forming. The proposed fractional differential viscoelastic model was extended to a three-element model, consisting of a single hyperelastic spring and two fractional differential (FD) models. It was further extended by time–temperature superposition (TTS) for thermo-viscoelastic analysis. The model determined all material constants by measuring the temperature/frequency sweeps at small strain amplitudes of 0.01% using dynamic mechanical analysis (DMA). Numerical analysis confirmed the validity of the proposed method through creep and stress-relaxation tests by DMA at the target temperature/strain. The results demonstrated that the finite element analysis constructed using the proposed method could predict the mechanical properties during vacuum-forming-oriented creep tests. These results are expected to provide important insights into the complex mechanical behavior of PMMA, which varies with the temperature and strain rate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call