Abstract
Dynamics problems in the thermal vibration of single-layered graphene sheets (SLGSs) are investigated using molecular dynamics (MD) method based on the Brenner's second-generation reactive empirical bond order (REBO) potential. The in plane stiffness and Poisson ratio of SLGSs are calculated by stretching SLGSs. The effective thickness of SLGSs is obtained by MD simulations for the thermal vibration of SLGSs through the natural frequency. The natural frequencies for SLGSs of different sizes with initial stress in different temperatures are calculated through MD. The thin plate theory can predict the MD results very well in a certain range of strain. For the nonlinear relation between stress and strain when the strain is very large, the deviation between the MD results and plate theory becomes larger when the strain increases. The difference between the plate theory and the MD results becomes more and more obvious, when the size of graphene sheet is very small.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.