Abstract
• Free vibration of thermally induced functionally graded spherical cap is analyzed. • A new decoupling technique is employed to analytically solve the problem. • Thermal buckling phenomenon is considered. • Effects of various parameters on the natural frequencies are investigated. Due to many applications of spherical shells on a circular planform such as the nose of the plane and spacecraft and caps of pressurized cylindrical tanks, in this article, free vibration analysis of a thin functionally graded shallow spherical cap under a thermal load is considered. A decoupling technique is employed to analytically solve the equations of motion. Introducing some new auxiliary and potential functions as well as using the separation method of variables, the governing equations of the vibrated functionally graded shallow spherical cap were exactly solved. The superiority of the relations is validated by some comparative studies for various types of boundary conditions. Also, thermal buckling phenomenon is considered. Using new different material models, efficiency of the functionally graded materials is investigated when the shell is subjected to a temperature gradient. The effects of various parameters such as radius of curvature, material grading index and thermal gradient are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.