Abstract

Thermal vacancy formation was studied for the Heusler-type ferromagnetic alloys Co 2MnZ (Z = Si, Ge, Sn) as a function of temperature (773–1273 K) by the density, electrical resistivity and positron annihilation measurements. The vacancy concentration increased with increase in quenching temperature and particularly, a high vacancy concentration exceeding 2% was observed in Co 2MnGe and Co 2MnSn. Estimated vacancy formation and migration energies were comparable with those for B2-type FeAl and CoGa alloys with high vacancy concentration. Further, the vacancy type and the vacancy site were examined for alloys quenched from 773 K. As a result, it was suggested that the mono-vacancies are randomly distributed over the lattice sites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.