Abstract

Thermal vacancy behavior in B2-type FeAl was analyzed through thermal expansion, lattice parameter, and elastic modulus measurements. High-temperature X-ray diffractometry (HT-XRD) was conducted to determine the lattice parameter at elevated temperatures, and the electromagnetic acoustic resonance method was applied to investigate the temperature dependence of the elastic moduli in B2-type FeAl. Using a series of in situ high-temperature techniques such as HT-XRD and dilatometry, the thermal vacancy concentration at elevated temperatures was estimated from the divergence between the changes in the sample length and the lattice parameter with temperature, giving a vacancy formation enthalpy of ∼0.7 and 0.6eV for Fe–40Al and Fe–43Al (at.%), respectively. The long-range order parameter was found to increase with temperature in a high-temperature range, indicating that the Fe-atom recovery process occurs in this temperature range. The in situ high-temperature measurements suggest that at elevated temperatures, thermal vacancies have no significant influence on the lattice parameter and elastic moduli of B2-type FeAl.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call