Abstract

Numerous studies have demonstrated the effects of laser-induced heat on demineralization of enamel; however, no studies have investigated the link between heat/laser-induced changes in physicochemical properties and bacterial adhesion. In this study, we investigated the effects of thermal treatment on surface properties of enamel such as hydrophobicity and zeta potential. Bacterial adhesion to treated surfaces was characterized by confocal laser scanning microscopy, and adhesion force was quantified by atomic force microscopy. The hydrophobicity of enamel increased after heating (p < 0.05), and the zeta potential of heated enamel became more negative than that of the control (p < 0.01). Streptococcus oralis and S. mitis were more hydrophilic than S. sanguis, with more negative zeta potential (all p < 0.01). S. mitis and S. oralis occupied significantly less area on enamel after being heated (p < 0.05). Heating reduced the adhesion force of both S. mitis and S. oralis to enamel with or without saliva coating. Reduction of adhesion force was statistically significant for S. mitis (p < 0.01), whereas that of S. oralis was not statistically significant (p > 0.05). Heating did not affect the adhesion of S. sanguis with or without saliva coating. In conclusion, thermal treatment and photothermal/laser treatments may modulate the physicochemical properties of enamel, preventing the adhesion of some bacterial species.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call