Abstract
The effect of thermal treatment on the microstructure and properties of pitches and thermal-treated, pitch-based TiB2/C composite cathodes were investigated. Thermal treatments were performed at 473 K, 523 K, 573 K, 623 K, and 673 K (200 °C, 250 °C, 300 °C, 350 °C, and 400 °C), respectively. The results show that the aromaticity of the treated pitches increases with an increasing thermal treatment temperature, and subsequently, the coking value and quinoline-insoluble (QI) content increase from 60.62 wt pct to 79.09 wt. pct and from 8.97 wt pct to 32.54 wt pct when the treatment temperature increases from 473 K to 623 K (200 °C to 350 °C). The volume fraction of coalesced mesophase in semicoke decreases with an increasing thermal treatment temperature, and after 673 K (400 °C) is reached, the coalesced mesophase is almost invisible. The bulk density and compressive strength of modified pitch-based cathodes increase with an increasing thermal treatment temperature from 2.24 g cm−3 to 2.39 g cm−3 and from 24.21 MPa to 54.85 MPa, whereas open porosity decreases from 34.62 pct to 27.06 pct. Both electrical resistivity and electrolysis expansion ratio first decrease and then increase with an increasing thermal treatment temperature, and the lowest values (45.63 μΩ m and 0.65 pct) are achieved at 573 K (300 °C). Compared with those of the parent pitch-based cathode, the properties of the modified pitch-based cathodes had improved significantly. The mechanisms of the improvements are discussed in the text.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.