Abstract

Phosphorene, a two-dimensional (2D) elemental semiconductor with a high carrier mobility and intrinsic direct band gap, possesses fascinating chemical and physical properties distinctively different from other 2D materials. Its rapidly growing applications in nano-/optoelectronics and thermoelectrics call for fundamental understanding of the thermal transport properties. Considering the fact that there have been so many studies on the thermal transport in phosphorene, it is on emerging demand to have a review on the progress of previous studies and give an outlook on future work. In this minireview, the unique thermal transport properties of phosphorene induced by the hinge-like structure are examined. There exists a huge deviation in the reported thermal conductivity of phosphorene in literature. Besides, the mechanism underlying the deviation is discussed by reviewing the effect of different functionals and cutoff distance in calculating the thermal transport properties of phosphorene. It is found that the van der Waals (vdW) interactions play a key role in the formation of resonant bonding, which leads to long-ranged interactions. Taking into account of the vdW interactions and including the long-ranged interactions caused by the resonant bonding with large cutoff distance are important for getting the accurate and converged thermal conductivity of phosphorene. Moreover, a fundamental insight into the thermal transport is provided based on the review of resonant bonding in phosphorene. This mini-review summarizes the progress of the thermal transport in phosphorene and gives an outlook on future horizons, which would benefit the design of phosphorene based nano-electronics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.