Abstract

Abstract A numerical study is performed to investigate thermal transport phenomena in turbulent gas flow through a tube with high uniform wall temperature. A k-ε turbulence model is employed to determine the turbulent viscosity and the turbulent kinetic energy. The turbulent heat flux is expressed by Boussinesq approximation in which the eddy diffusivity of heat is determined by a t2¯-εt heat-transfer model. The governing boundary-layer equations are discretized by means of a control volume finite-difference technique and numerically solved using a marching procedure. It is disclosed from the study that: (i) Like in a pipe with high uniform wall heat flux, laminarization takes place in a turbulent gas flow through a pipe with high uniform wall temperature, (ii) Once laminarization occurs, both velocity and temperature gradients at the wall diminish along the flow, resulting in a substantial reduction in both the turbulent kinetic energy and temperature variance across the whole tube cross section, and (iii) these attenuations cause a deterioration in heat transfer performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.