Abstract

Molecular dynamics simulations were performed to model the interfacial thermal conductance (G) from bare gold nanoparticles (icosahedral, cuboctahedral, and spherical) to a hexane solvent. The computed conductance was found to depend not only on particle shape, but also on the size of the nanoparticles, particularly for nanospheres. These results are compared with conductance out of the planar facets: (111), (100), and (110); all commonly exhibited in small patches on the spherical particles. Undercoordination of the surface atoms and the vibrational density of states in the icosahedra explain some of these observations. The exposed surfaces of icosahedral particles are dominated by (111) facets with 9-coordinated gold atoms. Cuboctahedral particles are dominated by the (100) and (111) facets with 8- and 9-coordinated surface atoms, respectively. The nanospheres approach a constant surface density of 6–9 coordinated sites at large particle sizes, and these surface atoms play a large role in the conductanc...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.